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Abstract

The phase dynamics of small amplitude synchrotron
oseillations in the vicinity of the transition energy is discussed
with kinematic nonlinearities ‘neluded. We introduce a
synehretron amplitude funetion analogous to the betatron amplitude
function and solve analytiecally the time evolution of Sunch
shapes, where the kinematic nonlinearities result in unsymmetrioe
bunch shapes. In addition, the above symchrotron ocscillation is
singular at transition crossing because of the kinematic
nonlinearity. From this simple faet, we identify an inherent
source of bunch diffusion. A method for estimating its size is
presented. When this theory is applied to the case of the FNAL
Main #ing, the predictions are in good agreement with numerical

simulations and are not inconsistent with experimental results.



§ 1. Introduction

The =affect of nonlinear kinematic terms /1,2,3,4/ 1s studied
for energies below and above transitlon energy. These nonlinear
kinematic terms are stronger the narrcwer the bunches. The
momentum eight 2 the bunch pasgses through 3 maximum at
trangition and the kinematic terms therefore have a maximum at
transition. They can ditort the particle orbits in different
ways, and they may lead to longitudinal emittance blowup.

In recent experimentgszn the FNAL Main BRing, bunch lengths
were measured at two energies, 14 GeV and 19.7 GeV, below and
above transition, at an average intensity of 2.6%10'° protons per
bunch ( total Main Ring Iintensity 2.8%10'2 protons per ecycle).
Values for the longltudinal emittance at the two energles have
been derived from these measurenents. The results were
0.22 eV-zec at 14 GeV and 0.28 eV-sec at 19.7 GeV, indicating an
emittance inerease In ‘the region of transition. Bunch lengths
were also measured at ‘Gtransition (17.6 GeV), where they bacone
very uaarrow (about 2.5 nsec). Furthermore, in order to clarify
the reasons which lead to thils longitudinal emittance blowup at
transition c¢rossing, many extensive computer simulations have
been perfcrmed independently by several people, ineluding the
present author. The simulation results, which strongly imply that
the effects of the nonlinear kinematic term are large, are
surprisingly consistent with the measurements.

It is the purpose of this paper to calculate the effects of



nonlinear Kkinematic " Serms In the ranges sround the transition
anergy and compare to results of computer simulations and real
machine studies.

This paper I3 divided in four main parts: Tn the first
part (8 2,3) we derive difference equations for acceleration in an
explicit ferm znd transform them into an differential form, which
enables us to construct a Hamiltonian formulation for longitudinal
motion. Here we zhall restrict ourselves %o small amplitude
oscillation. n addition, only the lowest-order nonlinear
kinematic term will be retained in this formulation. ITn the
second part (§ 4), introducing the notion of a synchrotron
amplitude function, we construct the " linear <lassical theory "
of transitisn in a form analogous to betatron oscillation, where
the nonlinear ‘tinematic term is neglected. In the third
part { § 5), using the perturbation theory, we calculate increments
of the longitudinal emittance as an effect of the nonlinear
Zinematic term on  llnear motion. We identify this effect as a
reason of the unsymmetric bunch shape just at transition that has
been recognized 1in the computer simulations. Tn the fourth
part ( §6), from a general poiﬁt of view with respect to
fime-reversability, 't will be shown that only such nonlinear
Kinematic terms can accumulate to give net effects over transition
crossing., Finally, a theoretical Tor formula for the emittance
blowup ratio will be presented.

In the sresent discussions, aeffects of longitudinal

space-charge forces/6/ and timing error of the phase-jump at
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transition /7/ are not included, tecause the former I3 neglizible
at least Cor the present situation of the FNAL Main Ring and exact

informatlon about the Ilatter has not been obtained.

§ 2, Difference and Differential Equations for Acceleration

-

The theory of longitudinal phase motion, deseribing the
energy and phase oscillatios that oceur when a particle passes
repeatively through one or more "accelerating cavities" situated
at localized points around the accelerator ring, is well Ilnown.
Since the oscillations normally are at a relatively low frequency,
1t is often legitimate as well as convenient to analyze them
theoreticall with differential equations derived by spreading the
accelerating field uniformly around the orbit. In reality, the
energy changes experienced by a particle are better represented by

]

difference equations and depend on the sine of the 2lectrical

o

phase angle ¢ at which the particle traverses the cavity. The
corresponding squaticong of motion are therefore both nonlinear and
diserete.

We consider here the case of synchrotron oseillations during

acceleraftion stage. To obtain the actual transformation, we
consider a short cavity system operating at a harmonic number h,
an angular f{requency Wej(t) and a peak voltage V(:t). We assume
that Wer(t) and Y(t) are independently controlled during

acceleration, The quantities denoted by E™ and &" are,



respectively, the =nergy and Lhe electrical phase angle with which
a particle enters the ocavity at the time of transit. Then the

nonlinear transformation may %2 writtan in the form

ni

E = E" + eV(n) sin " (2-1a)
Qe (n+i)

q)n-l—l = { __"'{'-__._ q,n + CUy}(h-rl\- ﬂT} {2-11)
f-Ur-{.(ﬁ\ w(g" )J?

where =2V(n)sind™ is the energy gain at the n-th transit and the

revolution period isg described in the form

2TC Co (I + ofp2™) ( w EToES (2-2)
"y = T F ——— )22
w(E™™) c[1-¢ MoCz/E"ﬂ)aJ%' A (E"™) g;"'),

where Cgis the length of the closed orbit corresponding t»2 the
syehronous energy Eg , © is the velocity of light, moc2 iz the
proton  rest 2nergy, 2z i3 the momentum deviation rom the
synchronous momentum, and ofp i3 the momentum compaction factar.

Since we assume the gulding magnetic field of H type, the betatron
acceleration can bte neglected heré. The synchronous particle is

defined by the equations

N+ n

E, Es + 4(n), (2-3a)

1

]

— + W (n+) - "
bs Weycn) S i w (M)

ni { Wry(n+y 27TC
’ {2-3b)



where

Aln) = eV(n) sinqb:) (2-30)

wo WE[ . 80 L A1)
Wrg (M)& hew(Bs) + [sin" o eVimy T eylun) J. (2-30)

Note that A(n) is determined by the change in the external guide

field B(%). Now the momentum compaction factor olp/%/ may be

written in the form

d’; = d(ﬂ’l + dllrzufl)1_f d@)(zrn-l)?-* O((Blﬂ-l);)’ (2-1)

where 0(( 3" ?) 1s the Landau symbol. Expanding the right-hand

side of Eq.{2-2) with respect to ZM', we have the expression

2N Co
w(E™") - CP(E,"‘)

o) 1 2
[1 + ?( CMl)anl""?t )(2‘"“)1'1' 7( )(zb\ﬂ)a_.‘__:] (2-5)
P

Co 2T _ 2mh
c P(E;H w (E,M') Wey (N1 2

where

2 (ne) = oY </ PEM) (P21 /e?) ) (e-6a)

>

2, _nH
(E o3 E
R (ne) = o= ’?:fwz_} . 3}1 s ).= ) E( )(2 o)
THESM) 2wt (E) 25 (E™),

7 (ney= o

" ( 2-6c)

5 x®) . 2 fUET)
;(Euﬂ)

@V 2pET) oL 7, 61(E","') oS
T(E "y .a.:.(anﬁ) T“(F;") 2% (f‘“' 7ES

=l



We note that all par+ticle simulations for a real acceleration mode
stated in the Introduction have been performed by Following the
difference <quations {2-7a) and (2-1b). The pair 2 and @ is
recognized not to be canonical because of the time dependence of
the frequency. We zre Interested in small-amplitude oseillations
around the synchronous point ( ¢: ,E; ) as a gulding center.

Setting
e” = E” - E (2-72)
n
r AREIE: L (2-7b)

we may write the difference equations for a2 small amplitude

oacillation as
€™ = €7 4+ eV (sind - sing)

= €" + ev(n) (osq:o;' x" r2-8a)

»

I Wey (nr1) . ~14(n4l .
2" = { ki v 4 +[21l\n +Sit U (w40 7y
Wep(0) eV ne) evin)

— . — 2-7(2-8b)
[ 27w €™ 292t (e“*')]}

where

AV (we) = (SKCLD (2-9a)
ﬁ:.(Esur-)E—,htl P -Ya

()

—— '
) (ne) = 7 o) (2-9b)

[ FZ(.E:#!) EshﬂJZ .



To write down *%he difference =2quations in the Torm of exact

differential ones we may use a § -function:

2R e V(1) tosgilt)
Ts(t)

T
i

X 5 (t), (2-10a)

. Wrylt) v a [znh-n-Tslf)q)s
Whieylt) T:Lt)

B o — Ao A
J[ Tlo€+ 71"m€ Jca-mb)
>

where Tg(t) 13 the pericd of the synchronous particle and one
iteration of the mapping. Here t'= Q(t)t+t' fe)=21 /74(t)
and the § -function of pericd 2R is glven by the Fourier

expansion

l ad
gm(t’):z—m ( | + 2 L

cos nt’ )
n=i - (2-11)

After neglecting rapidly oscillating terms in Eq.(2-10a), we have

. evit) cosdlt)
T:it) (2-123)

: o nhe Ty &, ] [0 + 24 €
X = Wri x + [anh+T, 3 ( ].
Wr4 Ts(t) {2-12b)
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3. Hamiitonian Tormalism

Inder the assumption that the damping term in Eq.(2-32b) is
negligible in the short periacd of <ransition crossing, we ecan
construct a Hamiltonian formalism for small-ampl itude
ogcillations. Neglecting the damping term, we find ( L, € ) to

4

be a canonical palr that yields the Hamiltonian

. l P —

e Vi) cosdylt) (3-1)

x
2 Tsitd) .

We shall assume that the synchronous phase angle 433 Jumps

discontinuously at t=0 in such a way that sint‘P, is eonstant and
sg» (cos ) = — sgn (1)

We snall measure © from thls instant. Now we introduce a2 scale

change of the independent variable ¢ by

T eVit) cosds (t) ] it
Ty = o [" (3-2)

Tsit)

Note that the new independent variable ‘Y nas dimensicn of
energy. With the above origin €or the time t, ™ is always

pogitive at all t, namely,

t -» O-{approaching transition), then N = O,

0+ =* £ {(leaving transition), then 0+ =2 .



I

Such a scals 2nange yields the new Hamiltonian

[ 21h + Tsleddie

H(x, € )=
e V(t) cos dslt)

[‘2' '(")(ﬂ El + '% :}l_"(t'! €3J
(3-3)

2

-+ X,

L
z

For later -~onvenience, 12t change the notation of the canonical

variables to

xX = p (3-4a)

€= -x. (3-4b)

Thus we obtain the Hamiltonmian in the simple form
“ . T i 1 | 3
H (x.p;x)z =P + 5 A0 -3 A ()X, (3-5)

where

[ﬂ:h + T (D) ‘{’s] prrd [2xht Ts(‘l-)q.)s] [d"..! 1/1;‘&)-'

o= 77 =
A e V(1) cospglt) B Y eVIE) Cosdslt) (3 g
. . Y 385 &)
Ay = - ZR FOE I (bt 06 [ *{ér?? ] (3-60)
X))z~ — == 4 : 3-6b
' eVity cos Psit) (ps ) Este)] ‘e Vit) cosds(t)

The form of Eq.(3-5) reminds us of the betatron aseillations in a



transport Tine with a3 nonlinear component. In  analeogy .o
perturbed betatron oscillaticns, we separate the right-hand side

5>f Eq.{3-5) intc unperturbed and perturbing tsrms

z

|<‘°’(x,p ) = =P =+ -—}_—1,(1)7:‘,

{3-Ta)
1
KD (x.p 1 x) = -3 Ayl (3-7b)

In the next section, we shall discuss the phase dynamies in

the vieinity of transition by studying the above 1linear

Hamiltonian K.
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§ 4., inear Motion

We consider the llnear system deseribed by
©) 1 i + A ("f)xl
K™ (x.p3; )= 5 p ® . (4-1)

He make the assumption <hat ‘the peak 3F voltage and ‘the
synchronous phase angle zre constant near transition. At  the

transition energy, the quantity
x
d(o\ -— 1/T5(t);

vanishes. Then, in the vicinity of this energy this quantity ecan
be approximated by the first term in a Tayler series expansion of

Eq.(3-6a) for deviations of ¥ from ¥t . We can therefore write

anh [v@)-54]
Aof¥) » — - o
B3 (0 E, (o) €Vio) (03,16 ¥y

Further, the quantity ¥ (t)- ¥7 can be written in fterms of

Ts C

Yty - ¥q

®@VS l‘“¢ 3
wioct Ts
Sind; (o)

= - K4 (4-3)
moC? osPyto)y :

t

Substitution of Eq.(%4-3) into =q.(4¥-2) yields



A, () 2 47h sinds
B ES &reV rosds

T4

ere all gquantities are evaluated at transition. For the sake of

later simplicity we set

2 4—1("\ Sl‘hb;
* =

L 3 *
8’ Es 5'.( eVos'd;
We point out that the system represented by Eq.(¥-1) has an

exach dynamical invariantg, which is designated a3 the

"Courant-Snyder invariant" /8,9/

1 . 2
Tx.p: ) = 2t Lsyx- St } (4-5)
* ) 2.S(1) {'x-f [35¢ 2ir

wnere S (7)) satisfies the auxiliary differential squation

S

I 1o . _
> S -~ 3§ tA(OsT= 1. (4-6)

When AL(X) is constant, the invariant T 1is ldentical %o the
-]

action variable of the system if we take the initial condition
S(+o0) = 1 /VA) , S(r@)=0. (4-7)

In the following, S(Y) will be called a synchrotron amplitude

function. For a time-varying functin Ae{Y ), from Eq.(U4-5) we



«now that an infinite sequence of phase points that have a certain
constant valus of T at an arbitrary time behaves as a deformable
moving =2liipse in the phase space (x,p;¥ ' after that time. The
form of sueh a ellipse, o2alled an “"invariant ocurve" in the
following, s uniquely determined by the zuxiliary differential
equation (4-6) alone. e consider the invariant curve deseribed
in terms of

T(x.p ; /)= I, (4.8)

with constant I,. The quantity I 1is equal to the value of the
action variable of the infinite set of phase points that comprise

the invariant surve, as mentioned above.
We may characterize the ellipse by two parameters {;‘ , S‘

which are funetions of S{(T ) and é('t)

E(y = {2L.5(0 , (4-9a)

[14 §€t)/4]
§(¢y= 21, . (4-9b)
St

They are the maximum extent of the ellipse n x and 2,
respectively.
If we assume %hat all parameters change adiabatically after

%t =Y, we can choose the approximated initial conditions



S0 L. ..

/ H >
! E(‘I) x

S{v, ) = l/h,(m , é('r.)'-'O. (4-10)

At Y =7, *“he elliipse begins to wmove, following the time
evolution of S$(Y) which is determined by Eg.{4-6). If we know
the wvalues of §(T), .'S(T) at N =0, which is the transition
time, we can evaluate exactly the maximum upper or lower height
from the synchronous energy £{(0) and the half phase spread §(0).

For the present A{X ), we now the general solution of
BEq.(4-6) can be written In the terms of  Bessel

Tunetions (see Appendix A},



2 r 2 2 1 ,
S(1) = (%)'r |a Ny + b, (@) ~z(aL~Ti,\,/‘Iy3fawt,3(:3]) 411

where a and b are arbiirary coefficients that must %e determined

by the initlal econdi“ions (4-10), and

8 Yk

¢

™
il
w|m

After mathematical manipulation {(see Appendix B), we thave the

coefficients
a= zule)r = e L= om, 0 2]
- nff&f,?;.)['z']-"f@'wy‘h'“ ‘-:E]) Hore)
b = 33- 2, N,:(z.\ -e-z;?-:-i_g—{;—l)[z.':\_%le.)whf?.)*- %]z (8-12b)
where
2, %ﬁ ?f/’ (4-13)

The ccefficients a and b have been uniquely determined by  the
initial conditions and we now know the exact time evolution of the
invariant curve. In particular, we are interested ‘n the
invariant curve Sust at  transibtion; it represents a bunch

envelope. From Eq.(4-11) we obtain the values of S(%) and

S(T)Y at T =0 (see Appendix C)



18

S{o)

"
w|+
-
w‘f-‘l
~,
_—
£
~—,
-
P

“U_14a)
3 F‘-(;_/j)) 2

. by i Qa g
S S I

Introduction of Eqs.(4-14a},(U4-14b) into Eqs.(4-Ua),(4-Uh) 3ieads
to analytical expressions for the maximum upper or lower height
from the synchronous enerzy and the half spread around the

synchronous phase at transision, Shat ls,

§0)= ¢ ()| s/s(n), (4-152)

YO R 8(7-)/[1@{:’] s(%)/ sto) (4-15b)

We consider the case with the initial conditions at T, =+00
where the linear ‘Y -dependence of Ap{Y )} still aold t= good
approximation. 4t such a region, the Bessel and Neumann functions
become sinusoidal with egual amplitude and quadrature phase

relaticnshnip, namely,
Jp(20) = 2l cos (2,-57/i2)
Ny (2= |3 /nr, Stw (2, - SWA‘&),

1;{3 fi-l)“-' Jl/'ﬂ:i; (OS(Q|+TC/¢Z)
:"‘2/7@' Sl‘n(i?l-'g"[/fz).

also (4-16)
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Substitution of Tq.(H#-16) into Eqs.(4-T2a) and (4-12b) yields

a = b = UM {417

From Eq.{5%-17), we can obtain a universal relationship between §
and S
ooz
S(0) ]/2,
q

§)5(0) = §(x I8 [ 4

2
-Eé(?l)g((ro). (4-18)

Equation  {4-18) 1s  equivalent to the result obtained by
Hereward 711/,

Predictions of the linear theory are not discussed in detall
here. Nevertheless they are in very good agreement with numeriecal
simulations. These simulations have been performed following the
exact mapping =quations (2-1a) and (2-1b) where nonl inear
kinematic terms are not ineluded in order to verify the validity
of the linear theory. In addition, the 3iinear theory discussed
here which provides exact time evolution of bunch shapes can
re-establish the well-wown story /8/ associated with transi-ion

erossing.

4 5. VNonlinear Motion



The nonlinear “inematic +term has ‘Teen distinguished as a
perturbing term In £9.(3-Tb). Tt gives unignorable affeats to the
liear oscillztion only during a very short pericd when a particle
crosses the <transition energy. n arder pie} assess its
quantitative effeects, 1%t 13 convenient to use “he action-angle
Tormal ism.

Under the linear canouiecal “ransformation

Q = §'x,

- (5_1)
P=-92X+ 9p,

where (%)= y5(7) satisfies the auxiliary equation

$ + A1) = 3 (5-2)
the Hamiltonian {3-5) reduces to
ka.p;vy =5 [1p+ Lot - Lama’ ]
Q. P;x) = 3 TR -FA . (5-3)
If a change of independent variable.
~
-2
g() - Sq, £ 0 dY + 6o, (5-1)
2

13 made, the Hamiltonian {5-3) becomes

3
K'@.p;0) = 7 (P+ Q‘)*"?M"’)Q- -
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Furthermore, <ntroduction of the action-angle variables (W,
Q = JZ:]' Su'nq),
(5-6)
P= {23 Cosy,

yields the Hamiltonian

?5 I
G(v¥y.,7T ;8) = 7 - 3 A7) (27) Sin Y (5-7)
From Eq.(5-7), we derive the canonical equations
’ 2G % . 3
¢ = >3 = 1T - 2P, (27)% siw Y, (5-8a)
/ BCT - LY 3, I 2
‘J‘ = - 'b_q-) = ? ;h("(\ (ZJ'Y& Sin '+| (OS‘-IJ_ (5-8b)
If the perturbing term in Eq.(5-8a) s much iess “han “he

unperturbed term, that is, small compared with unit, we obtain to

first order

)
3 V2
J(e®) ~ J(66)) 4 [ﬂ(e(ao\)]/‘g £ ) Aulr) 348tx) tos Bt) fig:g)
Ol

Using the relation (5-4), we have 2 more convenient ‘ntegral

expression
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4

Tee) & T + [2T6]t F 2 st essiey dy, 15-10)
T,

where the lower boundary of the integration will be determined in
the fsllowing considerations.

We note that the period of phase osecillation has the same
notation as the synchrotron amplitude function S(% ) because the

oseillation frequency s described by

. 1
- = — (5-11
V= 4(s) o - )

From Eq.(5-8b), the typical modulation period of the perturbing
term is S(X)/2. Generally, the value of S(%,)/2 1is much
smaller than 7, . This faet means that the effeets of the
perturbing term are averaged out , at least, at the early stage of
non-adiabatic motion (0™ £7 ), 3o it is reasonable for us to
take S{0)/2 as the typical lower boundary N, when the
perturbation beging to retaln net effects. Fortunately, 'n many
real situations, f, is sufficiently small so as to satisfy the

condition

3
(%) = %’-ﬁ'r,/’ « 7., (5-12)

The relation (5-12) enables us to deseribe (T or SN by



glementary funetions. Tn order to do this, “t is negassary -s
«iwow the %eszel funetion for small value of z. Tn Ref .13 we
observe that

a
1 2 /3
]1,3(21 = I'"_(df—/;) (f), {5-13a)

[ sz ,, VG | 2 -1/3
My (2 ) = SImwf [mm (%Y- F(2/3)(?) ] 513

Considering Eqs.(5-13a) and (5-13b), we obtain to first order with
respect to Y

ste)= §11) = (—}Y-(“ 9 )

{5-14)
where
49
LRSI
3r(463)rzf3 (5-15a) .

qa ﬁ'ﬂb 4 :L'é 1
Fre ——(5) +={ah- L) —— -

3r"(=13)(’) TEl ) et . 5

Further substitution of the above result (5-14) into {(5-4) yields
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~
B(x) = gq,_ \/sty’y d¢' + @, s e

2 2
:(;3{)('7{_") [903 (Byearer) - Aoy (ZY ¢ ]+ 6.
On  the other hand, A,(7) can be expanded with respect to Vs - ¥y

and %o first order

a1h [dn'r3(3;'/2] [1 , 4taud, "c]

Ay —
| @sq (“‘of-l)zev’“‘*’s B-Tq. ot T

(5-17)

where uﬁJaJV&e i3 the nonlinear lattice parameter. Using
Eqs.(5-14) and (5-17) , we write the perturbing integration in

Eq.(5-10) in terms of

t0ue
A7 = [zj(h)] ﬁ(o)S/z(o)g (i~ —'r)k(n o Y)SnuGh)!oseh)d‘{
‘l’

& [2] &Afﬂ.(o\sjﬁro\g [|+(‘.‘.‘ti"ﬁ’_. _3% )T] siw dlt) tosb i) d oy |

oC* ¥ (5-18)
Here we set
3 qtan b 3?- (
T — - T 5-1
[} h,.oc"h'-' 2r - 2 9)
|Y ——
G(ﬂ=32103 (-é-‘ ~5 )t 6. {5-20)

where

31" (%)1(_%), 3535(0)3 (%)Zr) 35"3: .Poa (_;%+ g’)+9’-
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Tsing the identity

[ tosb(r) ~ (0s38(7) ] ,

. }
sluzé(ﬂ tosB(T) = vy

with together (5-19), (5-20), we have

T
2y~ 4 [2]'(?;)jf2?..[o)‘>'3&(n)g (l+§,) ¥

B!

{ cos 19, dey ('};* 9,78, ] - 0s3[ 1, 'D°3('8_At;'rﬁ;)**éo]}d?t(5—~21)

We are interested in the value of AJ at T =0. This value i3
evaluated in the following way.

The integration to be performed is

h]
1 ':qg&d“((l'fﬂu“()g (s [54.903(%-*55 )1'-5.,]— ("55[3‘1&3({*51)@.}5’22)

Change of the integration variable &2

W= 7»903 ('g;* 33)“ 30,

@]

o W2 w -
I:e‘ 3‘§ dwe? (- 3845+ 3. 9.0
W]

e

-l

1v*/s.)

x (5-23)
(Cosw - (os3w ),

where
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w1 = T
w1 —3,”03 (.__Jl.q. 35).1. @, = b, (5-2Ua)

w2 =i dog 3,4 B,- 3;)03 [9;/(—:':2*33)]*69 . (5-28)

The integration of Eq.(5-23) f5 trivial. We obtain

J

T- < (1- 3135)& l m/gz

(asw + thuh)'

B u/s,'wq | “/gl(_'”gw”s'e“’){ }

'EJ 2 ! 2‘”/34
a%e {ﬂls._l'f | Ie

w
N . lemlzl(_s%;“”m 1—3;-‘-.31»)’ 65-25)
4lq: +9 .

(—;:(osw —+ S faw ) l..,

Some of the intermediate steps in the caleulation are explained in

Appendix D. The final resulis are

9301-9.9.3:)
1- 333____—| Eg a {-[—Sﬂn@"fgz fDS@" g&(‘/]'ﬁzui.l)]s-‘n@o

b g
-+ [ {OS@'fg,_Si'uE) - ((/z_il-r ] (059.,}

o 3d501-35:)

49~ { [- sin3®) 4 392 Cos 38 —3‘Jz(|/zj,+l)]sa‘q;9°

+ [cos30 + 39,5030 - (1/23,41) ] cos36, }

+ 3132—2331

g { (-250uB® + G, (o5 -9, U/zgﬁg)*_'] siuBo

1 [ 20058 « 9,506 —l(¢/23;+l)2] (oseoi'

— 3'?32 jil{ [_ls!“}s*gg “’53@"33 / 2 ! =
FPETES : : »(1/28,40) Tsdadf,  (5-26)

+ [2¢0538 133200538 —L('(/z.g,ﬂ)z'] Cos 39,‘}

where
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= 3. 909 Lo/ ("fg'li «i1)]. (5-27)

The value of I is dependent of the Initial phase 6. - T the
maximum and minimum  values of T are denoted by Imax{ > 0) and
Imin( £ 0), we can write the positive and negative changes of the

action variable in terms of
/2
2T(Tz)f 3 )
ATy = L—-q_——— o) o) I:g: , (5-28)

where the suffix symbols of the left-hand side do not always
correspond to those of the right-hand side because of the negative
sigm of 24(0). We define the emittance increase parameter, which
is independent of the initial emittance {(the initial value of the

action variable) of a particle, by

! 24
b(_! z T h—llo) S™0) I:?: . (5-29)

I is assumed that there are no net =ffects of the perturbing term

up to T =T, and we can take the value of J{ % ) as J(¥2). Then

30ed U+ W |23 ] € T LT L1+ k, 27&‘-’]. (5-30)

Thus incoherent changes of the action variable glive an unsymmetric
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2llipse I %the phase s3pace. Tn particular, we ecan chtain
expresaions for the maximm upper and lower height from the

synchronous energy and the maximum and minimum excursion from the

synchronous phase as

3

$ (o) e %z]’(’c) o)Lt + Ke)ogtm) ?(“c.)ﬂz)[”'"&[z}?ﬁ)l (5-312)

St 3
?{o)m:= & (1) Sw) L1t ke 23 ] . (5-31b)

where the value of S(0)/ S(%; ) has already been derived iIn the

previcus sectiocn.

§ 6. Applications

The theoretical considerations are applied to an example that
aorresponds %2 the nominal aeceleration mode in the FNAL Maln
Ring /12/. For this example, several parameters of acceleration

are listed in Table 1.

Table 1 Acceleration Parameters of the FNAL Main Ring

darmonics h=1113
RF Voltage eV==2,(MV)
Synchronous phase 4{;:235.87o

Transition gamma ¥=18.8
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Transition energy E =17.639(GeV)

My (e)
Nonlinear lattice parameter o /o4 =014 (Ref.11)

We choose W, as

tos Pslo) CESIO) - E;(Tl)]

4

5501- ‘iqlg Mev, (6‘1)

where E¢(T,) is enough far from transition. Using the parameters

in the table and the valus for Y, » we get
LI -3 i, 2
Es 0¥y (o5’ eV |

then

‘%

- ¥z
4.0891¢10" MeV )  (6-2)

2, - 2Rk = 36020

¥
S()= 1/ RY* = 103.3476 MeV (6-3)

From a table of Bessel functions /14/, we read

Ty (z1)=-0.2736, N'/J(z1)=0.3172, J_zé(z1):-0.309, (6-4)

Substitution of these values for z, ,Jig (z1),Ni4(z(), and Jag(z )

into Eqs.(8-12a) and (4-12b) glves

Ax
i

0.4056 + 0.3296 + 0.1877 = 0.9229}

(6-5)

o
i

0.5451 4+ 0.443 = 0.9881,
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From Egqs.(6-2) and [5-5) we get “he value of the synchrotron

amplitude funetion at transition

4 (TN R #3 q
S‘O) - ._.3_ (_3__3 (-3-) —’;’-_(;/-5 = 277-503 (MEV). (5—6)

Here, we use
[7¢1/3) = 2.6801, ’€2/3) = 1.3550, 7(4/3) = 0,89338 /157

The value of the coefficient R,(0) is
My (e) 203/
awh [ o 4 3f5¥/2 ]

oy (3;*‘0) (woCY eV(o) tosd,(v)

3
= |_1343¥'O Héu..(s_?)

|0 | =

The S(0) above leads to the value of the typical boundary
M= S(0)/2 = 138.7515 (MeV), (6-8)

The parameters 9,, §, in the integration of Eq.(5-18) are

%2 = -0.82797a = -0.8971
{6-9)
4, = 3.6118 » 157 _%;%%(é)#s = ~5.66 ® 10:3
then
@ - 3.0y L /(;',;—2 + 1) ] ==0.7312 (6-10)

Substituting these values for 3. , gz’ 33, ED into {(5-26), we

obtain the integral I in the form

I = (~39.1618)%3in(Be) + (—72.9502)*003(6@}

+(71.9840)#3in(36,) + (-5.2259)*%cos(36,), (6-11)



3
Thus Tmax = 136, Tmin = -174, (6-12)
From Eq.{6-12), we have

By =1/2%0.9577#10 7 *1622.7619%179 = 3.85%10"
(6-13)

B =-1/2%0.9577%10 7 #1722,7619%96 = -2, 12u1%1G2

H

Finaly, substituting these values for S(0), S into

Egq.{5-37a), we get

\
o) = §(%)*1.6386 % [ 1. + 3.7871%10 i) If’
(6-14)

$(0) = & (7% )%1.6386 % [ 1. - 2.080u%107 & (2, ) T

v

For several initial emittances which still allow 1linear
approximations, results obtalned from Zg.{6-1U4) are plotted in
Fig.2. In the same figure, numerical simulation results are also

Zlven. We see quite good agreement.

§ 7. Emittance Blowup at Transition

When a particle crosses the transitiosn energy, the electric
phase of BF is abruptly changed externally te T - ¢ . Such a
manipulation yields time-reversal of the phase motion for the

dynamical system described by

2
M{x., P 1)’-'—,'_ [p*+ 2ulv)x ]’ (7-1)
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because of the change of sign of the cogine funetion in

1
ity = g -
o)

[ ev(t) fosdgit) 3 at

7=-2)
Tt) (

will lead to time~reversing as seen in Filg. 3

r:g. 3
A ()

- -],

A 4

1N

Transition

while the sign of A,(%),

anh ey - ]
Aolt) s = — 3, (7-3)
Bs Y Esit) eVery tos Pyt 3y

3%£11ll remains unchanged due to sign changes of the denominator and
numerator. This holds even If all higher order terms with respect
to phase are included. Consequently, emittance blowup during
transition c¢ressing can't in principle be explained by synchrotron
ogeillation theory, which restricts itself to ordinary pendulum

o3cillations with adiabatically changing coefficients.
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On the other hand, %Yh2 coefficient of the nonlinear “inematic

Lerm,

ol Lo+ 3f 0[25016)]
Ay = - : (7-8)
Lost)Es) 1M evit) rosdstt) 7

changes its sign after the phase-jump. The dynamicazl system
including such a term 13 therefore no longer timereversible. Tn
other words, synchrotron oseillations accompanied with “inematic
nonlinearity are singular at Ltransition. Just after passing
transition, a bunch suddenly meets an unmatched bucket. This
leads to actual emittance blowup. The magnitude of the blowup is
proportional to the amount of emittance distortion due to the
nonlinear kinematic term. Thus we may write the final emittance

blowup ratio during transitlon crossing as
R= 1+ 2-kq J23(0), (7-5)

where J(, ) is the emittance or the value of the actlon varlable
far below transition. The final blowup ratio R is plotted as a
function of the initial emittance fﬁr the normal acceleration mode
(h=1113) 1in Fig.4. Results of measurements are alse glven in the
figure. The small overestimate seen may 1mply that the exact
nonlinear lattice parameter 13 somewhat smaller than the value

used in the present calculations.
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§ 8. Conelusion

A linear olassiczal theory of transitizn, which i3  2quivalent
to the sual one of matrix form,/31,76/ has baen developed by
introducing the synchrotron amplitude Ffunection. A3 a2 natural
axtension of this linear theory, a zenaral nethod which relies on
perturbation techniges to assess affects of the lowest order
nonlinear kinematic term 1is presentaed. When these theories are
applied to the case of the FNAL Main Ring, they agree very well
with  results of computer simulations and real measuremeénts. This
emphasizes the Importance of the higher-order chromatieity
control, which can be done by adjusting the n-th and Zn-th Fourier
components of the sextupcle magnetic filelds (n# horizontal
betatron Sune) /4. If 7Aa(7T) is reduced by such higher order
chromaticity control, the emittance blowup discussed here will be
improved.

The present analytical approach can be also used Lo derive
2xplicit sxpresslions for emittance inerements resulting from other
nonlinear forces which become significant, tn particular, in the

viceinity of transition.
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Appendix A General Solution of Auxiliary Equatiocn

When x, (%} and x,(X) are linearly independent 3-lutions of

the time dependent linear esquation

% + AftdxX =0, (4-1)

we can wrlte a general solution of {1ts modified nonlinear

Auxiliary equation (or =nvelope equation)

.. 1
 + XlOF = T3, (4-2)

where $(%) Ls the square root function of $(r), in terms of x, ()

and x,(% ) as

Vg
?(’t) = (C.I.l'f C:.Iz.z'\" Cax'za.)z. (4-3)

Squaring both sides of (&-3) and Differentiating with respect to
the independent variable Y , we have
. - - ‘e .y .
29+ 20¢ = 20 120 %, + 20y + 202X X4

t C)I'X; -+ CB X, ;(.:. + ZCB i’lx.l ’ (A-4)

From (A-1) and (A-2), Eq.(A-4) reduces to an equation inecluding

first time derivatives alone. ?urtﬁer, using (A-3), we obtain

- . » - ks
LHS = (2Clxl X+ 2017, 714- ij|‘x:_-'- C;z' YZ) + 2
2C ¢xtt QLA+ CixX:) CiX 4 I+ XX,

- 221%) (Gt e Gt + o ),

-2 . . »
RHS 2C.1;, + 2C; :nz“f 203 %, X, — ll(r)(C|x|;+ C:..X;l‘f' C; quz.)

Equating both sides and eliminating terms, we find

. R 1
(C;— 4C.C1XI‘YL" L)+ 4 =0, (A-5)
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From  [A-5%), “he arbilirary  2onstant 2, ,22 , and T3 are not

independent. Namely, €3 1is determined from C, and Cz2 as

Cy = ¢t J4c,c,__ 4, (4-6)

WJ.

where W 1s the Wronskian Xy Xu- %, X; , which is a constant.

“onsequently, we can write the general solution of (4-8) as

SCo = G+ QL) -2 ‘C.Cz.—' ‘::,‘ X () Nalt), AT

For the present case

Ale) = &/, (A-8)

the independent solutions of the linear equation can be written in

terms of Bessel and Neumann functions of order 173,

3

X, (%) = (e N, —;'- QT/"); (4-9a)
3

L) = AT (3R A, (8-30)

Thus the general aclution becomes
3 3
st): x| a ij (387" )+ bj&l@nﬁ) -—2“&15-;:: X
X 3/2 N 3/: {4-10)
Ny, (58 ) Ty ($%7¢74) ],
with

W= x,(0) %,(0) = 2,(0) x,(0) = /T .

This i3 in agreement with the result obtained by Lewis 710/,
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dppendix 2 Particular Solution of the Auxiliary Equation (U-6)

Since the initial aonditions are

ste,)= 1/ k¢

» {B-1a)

S(e,} = 0, (B-1b)

we have _mmediately fwo algebralic equations for a and b

6
T'ngl 2 (B=2a)

z i
aN, + bjul - Z(QB-%)ZI\:N'.;:

%

’ ’ 1 / ’ 2 {B-2b)
avgN, + bV - (qb- T") (Tuwdf jv”l’ = -7'("2"’

where VYV is 1/3, the prime denotes derivatives with respect %o z,
and all Bessel Ffunctions are to be glven their values at

z1zz(%, ). From (3-2a), we have

Vs any + bk — 6 [T

ql-) = (B3
LY Zj-v Nv ‘

(ab-

Substitution of {B-3) into (B-2b) yields

NJ(U.:-L; - N\JT‘)’) a + jo(ju, Ny~ TDN‘;) L S(T\:Nu“‘T\JNl;) 2
== =—=(B.4)
27T, 2Ny TT2I, M T

Using tae formula
/ / - / .
iju - j‘v My = 2/TT2, ({B-5)

we have
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az 2y o 2 (ghr e - ) e
2 2
”\’ -[N‘, 32‘

Tf we substitute (B.6) into (B-3), squars both sides, and compare

corresponding terms, we obtaln

2 {

3
b= =2,Ny =~
2 62, 7T)

‘ 3 7°
[%(j\f”ﬂ*’ IpNV) t j.\JNlJ + -E] N (B—?J

Further, from a recursion equation for Beasel functions
/ -1
3 = Ty =2 5, (B-8)

and the relation (B-5), we find

’ / ’ ’ 2
70 N, + TUM\! ‘Ju NU + JuNy + T2

v 5 (B-9)
= UL T ) N =
Tntroduction of {B-9) into (B-7) leads %o
=
3 L 3 2
b: -{?lw‘; + 2 (3.1_.!\’0* ‘Tt) (B=10)
2 il Tp
Thus we also find
3 22 G(?qu-qNo“/W-)
a =-§2.7\>L-« (31_)-04?«1\,*‘1‘1‘) - 14—-. (B-11)
* 22, N} TR Ny

Appendix ¢ Zvaluation of $(0) and 5(03

We set
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2 I/
S() = 0, m( ) [a N;,; (n) + Lj;;{am) -lfab—%_)a]?&fzhﬂl\fs{am) ic"”

LTy
2 J
where z{% ) is -_'3-'5'{/‘ . Using the formula
Ny (2 )< (cs—‘jfi)"j () (C-2)
7 e 'US [ by /3 ]

S(0) becomes
('T‘;") M‘M "C‘{ [j/; 419;7-@* 41'/] "Jbr fj,'. ?-)”I j(c 3)

If we retain only the lowest order term of the series expanzion of

the Bessel functions, we have

(-;’jg AC'/&

Jpleto) = (3 Tied3)” (C-Ya)
"I/3 /\C'VL

I_./,(a(-n) = (%) P (C-Lb)

Substituting {(C-%a) and (C-U4b) into (C-3) and taking its limit at

N =0, we obtain

S(b) = — :3&—) Ydj) (C~-5)

'S (0) can alsc be evaluated Iin a similar way. We set
I
. . 2 1 Y 9 v/2
Sto) = ;31»; (%)‘l [ aMy, + by, - J.(ab--..;) TNy, |

» / ’ q 4 -6
t 202 [ aNyuy+bTy, Ty fﬂb-f*j’f‘TéNw Ty ) ] i'; c-6)
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where dots denote derivatives with respect to f , primes Ienote
derivatives with respeet 5 2z, and all Besgel functions are
functions of =z(% ). 1sing formulas {(B-10), {(C-2), and the

recursion relation (B-9), we have

Ty 2
Ny Ny = 5 (T= 2T KTyt Ty 55 53 Lo )» (7-72)
maTa
J
BT = Ty (T~ 553,), (0-7b)
/ A _’_ - 2
Tibn * Jovy =50y 55 N T2y ) vy (C=Te)

Retaining only the lowest-order term of the series expansion for

Ty (2()) and J-%(Z{“())v we have

7
— ) X
Ji, (2ivy ) = {3 ) F(S‘/R)) {2-8a)
3 -/
- (£ Y. -
:[1/5{?.{1}) = (3) F(I/j) (7.8h)

. 3
From Tz = kY/? s the 1lmiting values of the component terms at
N =0 in (C-6) become ;2 y
2 K.k
{ 3 = en B.A TR ——
T vi Ty T = M 2(3)" 7 o

3/zfl/1+|
B - _Q.‘u. " _3_/51’/3 X
T_'o"r g]lf}j’/.‘ ( ) T'(‘/-B)T'(J'”)

-4, - -1
't-v P(y)T0/3) = plBiel3) »
(f_ )I/m(s b=\t

r3Irisiz) =9, (2_g)
Lo v 2 Ty Ty - g0 2R YT oo
T(4+3)P(¢f3)

=O’

b v 2 _L/JVS‘ ool

=0,
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Subgtisution of {7-9) into (2-6) yields

_ 2 8'( a .
S(o) = ‘QAM<[4 J-_é = ]-1/3 ) T a(" ’;’ j}{; 7—5‘1‘, + %'? T’:‘ 14/3)
9"r R

b (4
—1-(%--%)&(‘&"3)31'& W78 I’?j"’")]

(C=10)

1 [-. 44 (ah- — _ 12 z’tg
resITOR) Y( Greira) we ﬂ)j

Thus, we have

s 2T q 7 ’/:.
Slo) = S [-"ﬁ_'f (ab- -,i-;) ]- {(c-11)

Here we use the relation

27

r{z3) rG/3) = 5

Appendix D Calculation of Perturbing Integration

One of the four parts in the perturbation integration,

B9
I = e < ' 3:3;33 Jew/s‘(_ﬁl_ fosur +(u‘uw)|:z >, (D-1)

13 caleculated as follows:

w,
. 2 0-909) -5 o wyg +
L‘ 1 =+ glz ¢ [c ;[DSWL + 3; SIHWg)" 3 (fDSWI*?,IluW')J

-3, 2.33) 1 fog d foy (7,
\-taéj ;[ K ?(loswzfgz_huwz) € 0373( ;‘ )((°‘W’+3‘c““‘w')1

L (3,305

it 3:

f 92005 Lau gl 0T e L dosl 7 0]
-9 (,?’1-!) {0 o+ 3z s«'«9.)$ ,



-IA-' j*?i (f" 3,32.35 )

1t 5;_2

{Es"“@ 43"”©'5=[;§{**)}s:26 .
" L5645 8 - (L +1) 0, ﬁ

where

1
@-1 g;_ 203 [E:;—t‘

The other three parts c¢an be caleculakbed in a2 similar way.

(D-2)
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Abstract

The phase dynamics of small amplitude synehrotron
osecillations in the vieinity of the transition energy is discussed
with kinematic naonlinearities inecluded. We Introduce a
symchrotron amplitude function analogous to the betatron amplitude
function and solve analytically the time evolution of bunch
shapes, where the kinematic nonlinearities result in unsymmetric
bunch shapes. In addition, the above aynchrotron oscillation 1is
singular at transition eroasing because of the kinematie
nonlinearity. TFrom thls simple fact, we 1ldentify an inherent
source of bunch diffusion. A method for estlmating 1ts size ia
presented. When this theory i3 applied to the case of the FNAL
Main Ring, the predictions are in good agreement with numeriecal

simulations and are rot inconsistent with experimental resultis.
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